skip to main content


Search for: All records

Creators/Authors contains: "Seitz, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Two-color, toluene based, planar laser induced fluorescence (PLIF) is utilized to characterize the thermal structure of a turbulent, free jet. The PLIF technique has been used to measure concentration gradients for combustion applications, but its use to quantify thermal gradients is limited. To validate the method, compressed air is seeded with toluene particles. The seeded airflow is heated to temperatures varying from 300 – 375 K, and the heated jet exits a 1.27-cm diameter orifice into quiescent, room temperature air. The jet Reynolds number is varied from 5,000 to 15,000. As the jet exits the orifice, the toluene particles fluorescence across a 266 nm laser light sheet which ultimately provides a two-dimensional temperature distribution of the free jet. The rigorous calibration procedure for the PLIF technique is described along with the seeding nuisances needed to quantify the thermal structure of the jets. The PLIF technique has been demonstrated for this fundamental flow field, and it has proven to be applicable to more complex heat transfer and cooling applications. Furthermore, the time averaged temperature distributions obtained in this investigation can be used in the validation of turbulent CFD solvers. 
    more » « less
  2. Planar Laser Induced Fluorescence (PLIF) has been demonstrated to investigate a round jet impinging on a flat surface. Detailed thermal field distributions have been obtained near the flat target surface to characterize the wall jet development ensuing from the stagnation point. While PLIF has been demonstrated for combustion applications to measure concentration gradients within a mixture, its application for temperature field measurements is less established. Therefore, the technique was applied to a simple, cylindrical impinging jet. The jet Reynolds number varied with Rejet = 5,000 – 15,000 while the jet – to – target surface spacing varied from H / D = 4 – 10. The cooling jet (Tjet ~ 300 K) impinged on a flat, heated surface. The PLIF technique was able to capture the free jet structure and jet development along the target surface. With a short impingement length (H / D = 4), the potential core of the jet strikes the target surface. The thermal gradients captured during the experiments demonstrate the fully turbulent nature of the impinging jet with H / D = 10. The thermal boundary development along the target surface is clearly captured using this fluorescence method. The near wall temperature gradients acquired with the PLIF method have been used to calculate heat transfer coefficients on the heated surface, and these values compare favorably to those measured using a well-established steady state, heat transfer method. The PLIF technique has been demonstrated for this fundamental impingement setup, and it has proven to be applicable to more complex heat transfer and cooling applications. 
    more » « less
  3. ABSTRACT We develop a novel data-driven method for generating synthetic optical observations of galaxy clusters. In cluster weak lensing, the interplay between analysis choices and systematic effects related to source galaxy selection, shape measurement, and photometric redshift estimation can be best characterized in end-to-end tests going from mock observations to recovered cluster masses. To create such test scenarios, we measure and model the photometric properties of galaxy clusters and their sky environments from the Dark Energy Survey Year 3 (DES Y3) data in two bins of cluster richness $\lambda \in [30; 45)$, $\lambda \in [45; 60)$ and three bins in cluster redshift ($z\in [0.3; 0.35)$, $z\in [0.45; 0.5)$ and $z\in [0.6; 0.65)$. Using deep-field imaging data, we extrapolate galaxy populations beyond the limiting magnitude of DES Y3 and calculate the properties of cluster member galaxies via statistical background subtraction. We construct mock galaxy clusters as random draws from a distribution function, and render mock clusters and line-of-sight catalogues into synthetic images in the same format as actual survey observations. Synthetic galaxy clusters are generated from real observational data, and thus are independent from the assumptions inherent to cosmological simulations. The recipe can be straightforwardly modified to incorporate extra information, and correct for survey incompleteness. New realizations of synthetic clusters can be created at minimal cost, which will allow future analyses to generate the large number of images needed to characterize systematic uncertainties in cluster mass measurements. 
    more » « less
  4. ABSTRACT Galaxy–galaxy lensing is a powerful probe of the connection between galaxies and their host dark matter haloes, which is important both for galaxy evolution and cosmology. We extend the measurement and modelling of the galaxy–galaxy lensing signal in the recent Dark Energy Survey Year 3 cosmology analysis to the highly non-linear scales (∼100 kpc). This extension enables us to study the galaxy–halo connection via a Halo Occupation Distribution (HOD) framework for the two lens samples used in the cosmology analysis: a luminous red galaxy sample (redmagic) and a magnitude-limited galaxy sample (maglim). We find that redmagic (maglim) galaxies typically live in dark matter haloes of mass log10(Mh/M⊙) ≈ 13.7 which is roughly constant over redshift (13.3−13.5 depending on redshift). We constrain these masses to ${\sim}15{{\ \rm per\ cent}}$, approximately 1.5 times improvement over the previous work. We also constrain the linear galaxy bias more than five times better than what is inferred by the cosmological scales only. We find the satellite fraction for redmagic (maglim) to be ∼0.1−0.2 (0.1−0.3) with no clear trend in redshift. Our constraints on these halo properties are broadly consistent with other available estimates from previous work, large-scale constraints, and simulations. The framework built in this paper will be used for future HOD studies with other galaxy samples and extensions for cosmological analyses. 
    more » « less